HERBERT S. WILF

‘WHICH POLYNOMIALS ARE CHROMATIC? ®

RIASSUNTO. — Vengono studiate le condizioni per cui un dato polinomio P (A) &
i polinomio cromatico di un certo grafico G. Passiamo in esame certe condizioni note che
comprendono ineguaglianze implicanti i coefficienti e le relative differenze. Viene poi
dimostrato che ad un grafo G & associato un complesso' simpliciale tale che i coefficienti
del polinomio cromatico di G sono le sequenze simpliciali, nelle varie dimensioni, di questo
complesso. Da questo fatto si traggono condizioni aggiuntive sui coefficienti ¢ un teorema
di Kruskal. Infine, si deducono delle limitazioni superiori per i coefficienti nel caso in
cui G sia planare massimo.

§ 1. INTRODUCTION

Let G be a (finite, undirected) graph on 7 vertices and E edges (without
loops or multiple edges). If A is a positive integer, let P (A) = P (A\; G) denote
" the number of proper colorings of the vertices of G in A (or fewer) colors. Then
P () is a polynomial in X of degree =

(1) PA=N—a N g — o - (— 1) g A
For example,

(2) PO K)y=20—1 - A—n+1)

(3 PRiC)=0—0"+(1)(—D

where K, is the complete graph on » vertices and C, is an n-cycle. Also

(4 PO, K,,,,,,)=/S:(m',l):(n,/e)k()\—l)---(k——é—-—l—l— 1)

A<n

where K, , is the complete bipartite graph and s (#, ) is the Stirling number
of the second kind.

We are concerned here with a converse problem: given a polynomial
P () in the form (1), is there a graph G such that P(A) = P (A; G)? This
question is very difficult. We shall first review some known necessary con-
ditions on P (A). Next we will indicate a connection between this problem
end the question of characterizing the simplex counts in each dimension of
a simplicial complex #. The connecting link here is a classical theorem of
H. Whitney [1] on broken circuits, With the aid of this identification of the
problem, we will obtain new coefficient inequalities for the a; in (1) which

(*) Research supported in part by the National Science Foundation, and was in part
performed while the author was John Simon Guggenheim Memorial Fellow.
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are necessary if P () comes from a connected graph G. These unequalities
will follow from a powerful theorem of J. Kruskal [2] on simplicial complexes.
Additional coefficient inequalities will be found, by the same method, from
results of B. Grinbaum [4], Klee [3] and others.

We then restrict the question to maximal planar graphs, and find addi-
tional coefficient restrictions which apply only to such graphs.

§ 2. KNOWN NECESSARY CONDITIONS

For our starting point we state the theorem of Whitney mentioned above.
First, number the edges of the graph G from 1 to E in some manner. . Next,
from each circuit C of G delete the edge of highest index, obtaining, thereby,
the broken circuit C. "Then we have

THEOREM 1. (Whitney [1]). The coefficient a; of the chromatic polyno-

mial P (N) in (1) is equal to the number of j-subsets of edges of the graph G which
contain no brokem civcutt, for each j =1, -, n—1.

For example, if G is the graph in fig. 1,

the circujts of G are
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and the broken circuits are therefore the edge-subsets
12, 34 , 6 , 124 , 346 , 1246.

The j-subsets of edges which contain none of these are identical with
with the j-subsets of edges which contain none of

(1,2} . (3.4} . {5.6)

whence

ay =
a2=(z)—3=18

'a,=(;)——15=2o

= (})=3(2) 450

For the graph G of five vertices, therefore,
PO=2"¥—70 4+ 18 —20+8r=2A—1) (2 —2)".

If we now return to the general case, as corollaries we have the following
necessary conditions on P (0); in which we now suppose that G is comnnected:

7n—1

Ccr: a,-g( P ) =1, ,m—1).

Proof. Choose a spanning tree T of G. Number the edges of T with the
n — 1 highest labels E,E—1,.-+, E—n + 1, and number the remaining
edges of G arbitrarily 1,2,---, E-—=»n. Let S be a j-subset of the edges
of T. Then S contains no broken circuit. Hence a; is at least equal to
the number of such sets S. '

We have also

() ajé(a-l) =1, m—1).

J

Proof. 1f P(A) =P G), then & is the number of edges of G, by
Theorem 1. Hence a; cannot exceed (‘;.1), the total number of j-subsets of

edges of G.
Our condition C 5, below, is stronger than (s).

Cz: g ta—ato A (=) =0 (n = 2).

Proof. 1f G is connected and has = 2 vertices it must have an edge, and
so cannot be properly 1-colored.

C3: Pm+1)=P@m) (m=o0,1,2," )

Another sort of necessary condition can be based on a result of
Chvital [5]. Let «; denote the number of proper colorings of G in exactly
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% colors. Let C be one of these colorings, and let C,,---,C; be the color

classes of C, with v,=3#C;(f=1,---, £). From each color class, C,, choose

a subset S which is neither empty nor equal to C;. There are exactly
2’ — 2

such subsets. Re-color the vertices of S in the (£ 4 1)* color. By this con-

struction we obtain

%1((2”1_2)+... +(2V1__2)>

(£ + 1)-colorings of G, where the outer surn extends over all exact £-colorings
C. We count a fixed (£ + 1)-coloring C several times. In fact,'if Cy,- -, Coyq
are the color classes of C, we will count this coloring C as often as there are
integers 7, 1 = j = 4 such that GGUC,,; is an independent set in G, there-
fore it will be counted < £ times. We have then

T = % Z‘_, @+ 2% —2 k) = (2"t —2) ; 1= (2"*—2)

the main result of [5].

We note first, that if G is connected, the factor can be inserted,

A
E—

whence

k&
<6> Ti1 g— A

I (2”#'— 2) T

We note next that in terms of the 1, the chromatic polynomial P (%) is
n

P®=;n@)

and so by repeated forward differencing,
0 7 = A* P (0) (B=1,--, ).
If we put together (6) and (7) we arrive at a necessary condition for the
polynomial P (1) to come from a connected graph G in the form
Ca4: If Ais the forwa;'d difference operator, then

k
A—1

(8) Mﬂuwg( )@W—@NP@ £ = 2).

~ This criterion can readily be checked from a difference table of values of P Q).

§ 3. SIMPLICIAL COMPLEXES

By a simplicial complex € we shall mean a finite collection of finite sets
, T,++- with the property that

0 Se¥ , TCS=Te%.

w
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By a j-simplex of € we mean™® a set S €% such that 3 S =7, and the
dimmension of € is the largest 7 such that € has a j-simplex. With each
simplicial complex ¥ we can associate a polynomial P (A) = Pe (A) as follows:
if @; is the number of j-simplexes of ¥ then

(10) Pe() =N —a N F g, X" — . - (— 1) g,

where »# = dimension (%).
A simplicial complex € can be presented in at least three ways:

(a) we may list all of the sets of %.

(b) we may list the maximal (under inclusion) sets of %.

{c) we can make a list & of distinguished sets, and describe the complex
% as the collection of all subsets of the universe which do not contain any
set of the list 2. This procedure evidently describes a complex. Conversely,
if € is given, then take %, for instance, to be the list of all subsets which are
not in €.

THEOREM 2. Let P (A), tn (1), e the chromatic polynomial of a graph G.
" Then there is a simplicial complex € such that

PQ)=Pe ()
that is, the coefficients of the chromatic polynomial are the simplex counts in
eack dimension of some complex €.

Progf. The complex ¥ is the collection of all edge-subsets of G which
contain no broken circuit. (We shall call this complex 8 (G), so that
P () ;G = Pac Q).

The uscfulness of the above result rests on the fact that the sequences

(a1, a,, -+, a, which are the simplex counts of a complex € have been
completely characterized. Indeed, for 1 £ 4 < », define #;, 7, ,--- by the
relation : :

R Nnk—1 n:
o am () () o (1)
in which =1, and #;, 74, ,- -+ are uniquely defined by (11) and the con-
dition 73> m 3> -+ >#n; =247 Then define the symbol
(12) ay/k)=(7;&)+(7k_—i);|_...,
Kruskal [2] and later Katona [6] had shown that the minimum (if 7 < 4)
or maximum (if /> £) value of a,, if g is fixed, is exactly . Very

recently @ J. Eckhoff and G. Wegner (to appear) have shown that these
inequalities
a = &4 (< k)

actually characterize the simplex-count vectors of complexes completely.

(1) This is slightly at variance with the usual topological definition.
(2) I am indebted to Professor Griinbaum for this reference.



— 252 —

Hence our next necessary condition is
C5: The coefficients of the chromatic polynomial (1) satisfy the relations
(13) a; = af® (=1, n—1;I<hk).

Further progress along these lines must await refinements of (13) which
hold for complexes which have the special properties of B (G), which do not
hold for complexes in general. In this direction, we observe that the B (G)
complexes are special in that all of thier structure is determined by the top
dimension # — 1, which is the content of the following

LEMMA. Let G be a connected graph. Then B (G) is a homogeneous
simplicial complex, i.e., every simplex of dimension d <n—1 is a subset of
some simplex of top dimension n— 1 (spanning tree with no broken circuit).

Proof. Let S be a d-subset of edges of G with no broken circuit, where
d<n—1. We must extend 5 to a (d + 1)-subset of the same type. Let
T denote the set of all edges ¢ of G such that one endpoint of ¢ is incident
with S and the other endpoint is not.

Now T is nonempty, for otherwise the edges of G—S would fall into
two classes: (I) those which, if adjoined to S, would complete a circuit of G.
(IT) those which are disjoint from S. But (II) is empty or G would be discon-
nected. Hence all edges not in S complete a circuit, and S is a spanning tree,
a contradiction.

Now adjoin to S the highest numbered edge, ¢*, of T. Evidently SuU¢*
contains no circuit. Suppose it contains a broken circuit, and let f be the
“ missing edge’”. Then f has a higher number than ¢* yet f€T, a contra-
diction, whence StJ¢* contains no broken circuit, as claimed.

As questions for further investigation, we ask:

(I) What is the characterization, analogous to (13), of the simplex
counts of a Aomogeneons complex?

(II) Which abstract complexes can arise as a 8 (G) for some graph
G and edge-numbering of G? (Professor Brylawski has kindly supplied an
example where different edge-numberings yield non-isomorphic complexes).

We observe finally that the conditions (C 1)-(C 5) are not sufficient.
Three polynomials which satisfy all of them and yet are not graphical are

N+ 10 —800+2x, N—7a+ 20080 —2600 4122,
N8t 268 — 37 18

§ 4. DISJOINT GENERATORS

In this section we consider a special class of graphs G, namely those
which share with the graph of fig. 1 the property that the chromatic polyno-
mial can be calculated from a set of pairwise disjoint broken circuits.
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A set S of broken circuits of G will be said to generate B (G) if

(a) B (G) is the collection of all edge-subsets of G which contain no
broken circuits in S and
(b) No set in S contains any other.

The family of graphs which we study here are the graphs G for which
the complex B (G) has a set S of pasrwise disjoint generators. These graphs
are quite special, indeed we will see that they are all 3-chromatic.

LEMMA. Let S,--+,5; be pairwise disjoint subsets of a set S, where
#S=n,%S=vEF=1, 0. Let a:f denote the number of j-subsets of
S whick contain none of the S; as a subset. Then

1

2
(14) arai= (1 42 T4 Y — 1),
J&0 Tl
Progf. In order to construct a j-subset of S which contains no 5,,
we choose 7 <wv, elements of S;,--+,7, <v; elements of S;, which can be
done in
(m) ) ()
”y k) ri
ways, and the remaining j — (ry + - -+ + 7;) elements can be chosen in
(n——-vl-—----——w)
J'_rl__....___rl

ways, from which

* — V1 Ve [
F= B (n) ()
71+...+rl+£__7 1 2

05r,-<-v’.

() ()

and the generating function (14) follows at once.

If the complex B (G) has pairwise disjoint generators, then it follows

from the Lemma that the chromatic polynomial of G is
” E d I

(16) PO=(1—x) E{“W}
where E is the number of edges of G, # is the number of vertices of G, and
v; is the number of edges in the 7t broken circuit in the set of / generators.

Since P (1) is completely factored in (16) we can read off its zeros, which
arc at A = 1 — w where o runs through the vP.roots of unity f=1,---, 0.
Hence if some v; is even, G is 3-chromatic, while if all v; are odd, G is
2-chromatic (bipartite).

Now consider a graph G which need not have a generating set of pair-
wise disjoint broken circuits. Suppose we select, from among the broken
circuits of G, a subset 5 of them, and consider the complex B which is
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ene i i :
g (Gg a:fg} bbY S. Evidently, in every dimension the number of simplexes in
€ at most equal to the corresponding number in B, 7e., we will
have found upper bounds for the coefficient of P (x; G). ’

. ¥n particular, let G be a maximal planar graph. Among the broken
circuits of G we can select S to be a subset consisting of pairwise disjoint bro-
ken circuits each of which contains exactly two edges. Such broken circuits
consist of two of the bounding edges of some face. We will call them éroken
Sace boundaries. Suppose there are exactly v such broken circuits in S. Then

by the remarks in the preceding paragraph and equation (16) with /= -,

vy = - » == v, = 2, the coefficients &; of the chromatic polynomial of G are

dominated by the corresponding coefficients af of the function

L o= (s +3) (=)

— }\n—E+1 ()\ + I)E—-zr O‘ + 2)1-.

For the sharpest estimates we want t to be as large as possible. In that

direction we have
THEOREM 3. For a maximal planar graph G of F faces we can number
the edges of G so that there will be Flz2 pairwise disjoint broken face boun-

daries.
Suppose true for graphs of

.. if F=a2.
Progf. This is clearly true if Choose a pair of adjacent

2,4, F—2 faces, and let G have F faces.

f of G
aces N

B
‘ . . . d VV
* Ly identifying V an
as shown, and create a new graph, G", by 1

A

G* VW

B
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Suppose the two edges of G* shown acquire the numbers /, 7z. Thenin G, G*
we have the configurations

s A “
L
L
) W
G*: svw G:
m m
ILB B

where the assignment of 7,z to the left or right member in G is arbitrary.

Consider first the case where one, at least, say (A, VW), of the edges
of G* shown is not involved in any broken circuit in G*. N umber edges AW,
VW, BW with numbers E—1,E —2, E respectively. This creates a new
broken circuit, consisting of edges AV, VW, which is disjoint from all others,
and does not destroy any previously existing broken circuits. Hence in G
" we have F/2 such circuits.

Otherwise, both (A, VW) and (B, VW) in G* belong to broken circuits.
Then in G, the edges / and #, say belong to broken circuits inhe-
rited from G*. AW and BW do not belong to any such. Suppose AW
is not the third side of a broken face boundary. Then we number AW, VW,
BW with numbers o,—1, E—2 respectively, obtaining a new circuit
(AW , VW) and destroying no old one. Finally, if AW is the third side of
some broken circuit, then in G we have the picture

where we know that />#,/> s because », s is a broken circuit in G*,
Renumber each edge whose label x satisfies /< x < E — 3 with the label
x + 2. Number edges AW, VW, BW with labels /,/ + 1, E respectively.
It is easy to check that this renumbering, which produces one new broken
face boundary, does not disturb any previously existing one.

THEOREM 4. Let
P (7\) = 7\”'— @y )\"—1 + dy 7\’i‘2—'
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be the chromatic polynomial of a maximal planar graph. The coefficients of
P () are dominated by the corresponding coefficients of

X0+ D O+ 2

and, explicity, we have

min (7,7#—2)

(18) < & (j::)(n—k—z)zb G=1, -, n—1).

Proof. By Theorem 3 we can apply (17) with -r=%= n—=2. The
right hand side of (17) becomes simply .
YOO+ )+ 2T
whose coefficients appear in (18).

It is instructive, to get an idea of the sharpness of this bound, to deal
with the case j = # — 2, where (18) becomes

n—-2
Gy = n—2 22“=—I"P,,_ —
-1 = g) ( A ) (—n 2(—3)
where P, (x) is the usual Legendre polynomial.: For large #,

(— 1) Pag (— 3) ~ A (3 + Y2)" = Ant (5.82- )"

which may be compared with the universal upper bound given by condition
C 2 above:

ars S (3170 ) ~ 8 (6.75)"

97—
The first three inequalities (18), when compared with the actual values of
G, dy,aqs, arc
(J==1) 3n—6=31n—6

n—2

(G=12) ——@rn—28 =

(=13 (n—2) (3n—28) 3n—1) (n—Z)(n——zs) (9n—24)

n—2
2

(97 —23)
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